高中数学困难程度更大,困难程度在于它的深度和广度,同学们要理清思路,抓住重点,智学网为各位同学整理了《高中一年级必学二数学复习考试知识点》,期望对你的学习有所帮助!
1.高中一年级必学二数学复习考试知识点 篇一
分层抽样
1.分层抽样(种类抽样):
先将总体中的所有单位根据某种特点或标志(性别、年龄等)划分成若干种类或层次,然后再在每个种类或层次中使用简单随机抽样或系用抽样的方法抽取一个子样本,最后,将这类子样本合起来构成总体的样本。
两种办法:
1.先以分层变量将总体划分为若干层,再根据各层在总体中的比率从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的办法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不一样的子总体中的样本分别代表该子总体,所有些样本进而代表总体。
分层标准:
(1)以调查所要剖析和研究的主要变量或有关的变量作为分层的规范。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区别的变量作为分层变量。
3.分层的比率问题:
(1)按比率分层抽样:依据各类型型或层次中的单位数目占总体单位数目的比重来抽取子样本的办法。
(2)不按比率分层抽样:有些层次在总体中的比重太小,其样本量就会很少,此时使用该办法,主如果便于对不同层次的子总体进行专门研究或进行相互比较。假如要用样本资料判断总体时,则需要先对各层的数据资料进行加权处置,调整样本中各层的比率,使数据恢复到总体中各层实质的比率结构。
2.高中一年级必学二数学复习考试知识点 篇二
1.任意角
角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边地方不同分为象限角和轴线角.
终边相同的角:
终边与角相同的角可写成+k360.
弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.
③用弧度做单位来度量角的规范叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
④弧度与角度的换算:360弧度;180弧度.
⑤弧长公式:l=||r,扇形面积公式:s扇形=lr=||r2.
2.任意角的三角函数
任意角的三角函数概念:
设是一个任意角,角的终边与单位圆交于点p,那样角的正弦、余弦、正切分别是:sin=y,cosplay=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点p,过p作pm垂直于x轴于m.由三角函数的概念知,点p的坐标为,即p,其中cosplay=om,sin=mp,单位圆与x轴的正半轴交于点a,单位圆在a点的切线与的终边或其反向延长线相交于点t,则tan=at.大家把有向线段om、mp、at叫做的余弦线、正弦线、正切线.
3.高中一年级必学二数学复习考试知识点 篇三
1、科学记数法:把一个数字写成的形式的记数办法。
2、统计图:形象地表示采集到的数据的图。
3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每一个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4、条形统计图:了解地表示出每一个项目的具体数目。
5、折线统计图:了解地反映事物的变化状况。
6、确定事件包含:一定会发生的势必事件和肯定不会发生的不可能事件。
7、不确定事件:可能发生也会不发生的事件;不确定事件发生的可能性大小不同;不确定。
8、事件的概率:可用事件结果除以所以可能结果求得理论概率。
9、有效数字:对于一个近似数,从左侧第一个不是0的数字起,到精准到的数位为止的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间地方的数,计算简单,受极端值得影响较小。
13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。
15、普查:为了肯定目的对考察对象进行全方位调查;考察对象全体叫总体,每一个考察对象叫个体。
16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本。
17、随机调查:按机会均等的原则进行调查,总体中每一个个体被调查的概率相同。
18、频数:每次对象出现的次数。
19、频率:每次对象出现的次数与总次数的比值。
20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。
21、方差:每个数据与平均数之差的平方的平均数,刻画数据的离散程度。
21、标准方差:方差的算数平方根刻画数据的离散程度。
23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。
24、借助树状图或表格便捷求出某事件发生的概率。
25、两个对比图像中,坐标轴上同一单位长度表示的意义一致,纵坐标从0开始画。
4.高中一年级必学二数学复习考试知识点 篇四
空间中的平行问题
直线与平面平行的断定及其性质
线面平行的断定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那样这条直线和交线平行.线面平行线线平行
平面与平面平行的断定及其性质
两个平面平行的断定定理
假如一个平面内的两条相交直线都平行于另一个平面,那样这两个平面平行
,
假如在两个平面内,各有两组相交直线对应平行,那样这两个平面平行.
,
垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
假如两个平面平行,那样某一个平面内的直线与另一个平面平行.
假如两个平行平面都和第三个平面相交,那样它们的交线平行.
5.高中一年级必学二数学复习考试知识点 篇五
算法
1、算法定义:
在数学中,算法一般是指根据肯定规则解决某一类问题的明确和有限的步骤.目前,算法一般可以编成计算机程序,让计算机实行并解决问题.
2、算法的特点
①有限性:算法中的步骤序列是有限的,需要在有限操作之后停止,不可以是无限的。
②确定性:算法中的每一步应该是确定的并且能有效地实行且得到确定的结果,而不应当是模棱两可。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后续步骤, 前一步是后一步的首要条件,只有实行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不性:求解某一个问题的解法可能不是的,对于一个问题可以有不一样的算法。
⑤普通性:不少具体的问题,都可以设计适当的算法去解决,如心算、计算其计算都要经过有限、事先设计好的步骤加以解决。